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SOME FINITE DIFFERENCE SOLUTIONS OF THE LAMINAR
COMPRESSIBLE BCUNDARY LAYER SHOWING
THE EFFECTS OF UPSTREAM
TRANSPIRATION COCLING

By John T. Howe

SUMMARY

Three numerical solutions of the partial differential equations
describing the compressible laminar boundary layer are obtained by the
finite difference method described in reports by I. Fligge-Lotz,

D. C. Baxter, and this author. The solutions apply to steady-state

supersonic flow without pressure gradient, over a cold wall and over an
adiabatic wall, both having transpiration cocling upstream, and over an
adisbatic wall with upstream cooling but without upstream transpiration.

Tt is shown that for a given upstream wall temperature, upstream
transpiration cooling affords much better protection to the adiabatic
solid wall than does upstream cooling without transpiration.

The results of the numerical solutions are compared with those of
approximate solutions. The thermal results of the finite difference
solution lie between the results of Rubesin and Inouye, and those of
Libby and Pallone. When the skin-friction results of one finite differ-
ence solution are used in the thermal analysis of Rubesin and Inouye,
improved agreement between the thermal results of the two methods of
solution is obtained.

INTRODUCTION

Cooling problems arising from high-speed flight have stimulated
interest in transpiration cooling of vehicle surfaces. Aerodynamic
heating and the need for cooling are often quite localized on an alrcraft,
which makes it possible to restrict the porous surfaces associated with
transpiration cooling to selected regions on the aircraft. Structural
considerations make it desirable to limit the porous region as much as
possible. A limited region of transpiration cooling may provide some
thermal protection to regions downstream. References 1l and 2 have pre-
sented analytic methods for evaluating the thermal protection afforded a
surface adjacent to and downstream from a transpiration-cooled region.



The results of the two analyses differ considerably because of different
assumptions made in joining the flows at the interface between the porous
and nonporous regions. This present report does not have to make such
assumptions.

This report evaluates the thermal protection afforded in three flow
conditions by finite difference solutions of the laminar compressible
boundary-layer equations. The first two conditions are flow over a cooled
solid wall and an adiabatic solid wall downstream from a porous
transpiration-cooled region. The third condition is flow over an adia-
batic wall downstream from a solid cooled region without transpiration.

In a1l three flow conditions, the upstream wall temperatures are the
same. The exterior flow conditions for all cases are Mg = 3.0 and

Te = 389.99° R. The latter is the tropopause (top of the troposphere)

flight temperature (ref. 3). The results are compared with those of
references 1 and 2.

The finite difference solutions of the partial differentis? _.uations
were computed on an IBM~-650 digital computer.

SYMBCLS
a velocity of sound, ft/sec
bn coefficient in the i,T expansion, equation (All)
cn coefficient in the i® expansion, equation (Al7)

cr local skin-friction coefficient, — ¥
2

5 Pele
cp specific heat at constant pressure, sq ft/se02 °Rr
Cy specific heat at constant volume, sq ft/sec2 °R
C, Chapman-Rubesin constant (ref. 4) based on upstream region wall

tempeiature

dn coefficient in the T2 expansion, equation (Al2)
Ty variable proportional to blowing rate in reference 5
h local heat-transfer coefficient, ETE¥“" s lb/ft sec “R

w-+ad



Pr

Reyx

Re

St

enthalpy, ¢ T, sq ft/sec?

b

2
t

enthalpy difference, sq ft/sec2

dimensionless enthalpy, L
a

thermal conductivity, lb/sec °R
reference length, ft
Mach number at outer edge of boundary layer

X—Xi

number of mesh widths from the starting value of x,

number of mesh widths from wall, ii
u

static pressure, lb/sq ft
parameter used in computer program logic (appendix c)
increment of P

Cph

Prandtl number, k

, 0.72 for air

=37
local heat-transfer rate, -KTI, = u s lb/ft sec

y

parameter used in computer program logic (appendix C)
gas constant for air, sq ft/sec2 °R

Reynolds number based on properties at outer edge of the

X
boundary layer, Ze*Pe
He
. . ayloyg
Reynolds number based on stagnation properties,
t

constant in the Sutherland law, °R

Stanton number, B—ll——
e

uecp

absolute temperature, °R



Tag adiabatic wall temperature computed by equation (15) of refer-
ence 5, °R
u component of velocity parallel to the surface, ft/sec
Au interval between mesh points in the u direction, ft/sec
v component of velocity perpendicular to the surface, ft/sec
bs distance coordinate measured parallel to the surface, ft
Ax distance between mesh points in the x directicn, ft
N distance from the surface, ft
V4 ratio of specific heats, ;%
9 coefficient of viscosity, 1lb sec/sq ft
0 mass density, lb sec®/rt4
T shear stress, HUy, 5 lb/sq ft
Tt dimensionless shear stress, Iilg%g
Pt
Subscripts
ad adiabatic wall condition
e conditions at outer edge of the boundary layer
i initial value of x in defining m
u,X,y partial differentiation with respect to wu,x,y
w wall
t isentropic stagnation conditions for flow at the outer edge of

the boundary layer

n=0,1,2 successive ccoefficients in a power series expansion

1 conditions in the upstream region, % <1



Superscripts

1 total differentiation with respect to x

+ dimensionless quantity used for actual computation on digital
computer (see also ref. 6, egs. (2.8) to (2.22))

METHOD OF SOLUTION

Only a brief description of the method is included here. The many
details of the method can be found in references 6, 7, 8, and 9. A
mathematical description of the solution is included in appendix A. The
minor modifications to the computer program are presented in block
diagram form in appendix C.

The laminar compressible boundary-layer equations in the Crocco
form (ref. 10) are solved on a finite difference basis progressing down-
stream from x/L = 1, where initial profiles (obtained from ref. 5) of
enthalpy and shear stress across the boundary layer are specified. The
specific heat, Cps is assumed constant. Although the examples presented
do not involve pressure gradients, the method is not restricted to con-
stant pressure.

Boundary conditions at the outer edge of the boundary layer and at
the wall are incorporated in the solution as they occur. Because the
partial differential equations (Al) and (A2) cannot be solved at the wall
(i.e., u = 0), each wall point is treated by series expansions; that is,
a series expansion of T2 in terms of u, in which the coefficients are
determined by boundary conditions at the wall, 1s written through two
points within the boundary layer yielding an expression from which the
wall shear stress can be obtained.

Series expansions for the thermal properties are written in a similar
manner. If wall temperature is specified as a boundary condition, a
series expansion for iyT in terms of u 1s written through three points

in the boundary layer, finally yielding an expression for the heat trans-
fer at the wall. If, on the other hand, the heat transfer is specified

as a boundary conditicn, either a series expansion for 1 or Simpson's
rule is used to cobtain the wall temperature.

Other features of the finite difference solution are as follows.
The flow exterior to the boundary layer is specified, and is treated by
the usual isentropic flow relations. The Sutherland viscosity law is
used to compute the viscosity at each mesh point. The mesh width employed
in the finite difference scheme is determined by the stability criteria
of reference 8 such that errors tend to vanish as the numerical solution
progresses.



A TEST EXAMPLE

The computation of each example in this report extended from
x/L =1 to X/L = 2 or 2500 steps downstream from the starting profiles.
Previous examples (refs. 9 and 6) computed by this program have not been
carried that far. For this reason, it is desirable to use the program to
try to reproduce a known solution over that many steps. The test example
chosen is for flow at Mg = 3.0 over a solid flat plate having wall

temperature level Tw/Tad = 0.5. The shear stress and enthalpy profiles
used to start the finite difference solution can be found in reference 9.

The results of the finite difference solution are shown as solid
lines in figure 1. An exact solution taken from reference 5 is shown by
dotted lines in figure 1. In the finite difference solution, series
expansions (eqs. (A13) and (Al5)) operating on the given initial profiles
resulted in skin-friction and heat-iransfer parameters identical to those
of reference 5 at the start (x/L =1). At the end of 2500 steps down-
stream, the finite difference value for the skin-friction parameter
differed by less than 1 percent from that of reference 5. OSimilarly,
the heat-transfer parameter differed by 1 percent from that of refer-
ence 5. The solution of the finite difference equations is considered
to be correct. Figure 1 indicates that this correct solution of the
finite difference equations converges satisfactorily to the numerical
solution of the differential equations of reference 5 in the region
shown.

It should be mentioned that the linear viscosity law is used in
reference 5, and the Sutherland viscosity law is used in the finite
difference solution. I. E. Beckwith suggests in a private communication
that these different viscosity laws are responsible for the very small
differences between the two solutions in figure 1. He points out that
in reference 11, which also uses the Sutherland viscosity law, the results
for the same example are about 1.5 percent less than the results of
reference 5.

SOLUTIONS IN A REGICN DOWNSTREAM FROM A SURFACE THAT
IS COOLED WITH AND WITHOUT TRANSPIRATION

Starting Profiles and Numerical Data

The initial profiles of shear stress and enthalpy used to begin the
three examples of interest are obtained from the "exact" solutions of
reference 5. These exact solutions of the boundary-layer differential
equations are free from many of the limitations (such as low speed flow,
Pr = 1, and use of integral or empirical methods) of other exact solu-
tions. Profiles with transpiration correspond to those at the end of a
porous upstream region of a flat plate having transverse blowing at the
wall at a rate proportiocnal to the reciprocal of the square root of the



distance from the leading edge. In particular, profiles corresponding
to fwl = -1.0 and f'Wl = 0 (ref. 5) are used. These prrofiles are at a
distance x = L from the leading edge of the plate. In addition, the
conditions

Te = 392.99° R
Mg = 3.0
Twl/Tadl = 0.5 for fy = -1 example

Twl/Tadl = 0.459 for fy, = 0 example

are chosen to determine the starting profiles. The first one is the
tropopause flight temperature (ref. 3). The last three correspond to
supersonic flow over a cold upstream wall. The ratios Twl/Tadl differ
between the transpiration and no transpiration upstream region examples
because the upstream wall temperature is specified to be the came
(152.34° R) in both cases but the recovery factors in the upstream region
are different. The choice of T, 1influences the base of the wviscosity
law mostly, and for these flat plate examples prcobably does not restrict
the applicability of the results to cther conditions of temperature and
pressure, provided the Mach number and ratic of wall temperature to
adiabatic temperature are unchanged. Computation of an example showed
that halving 7Te did not change the results by more than 1 percent.

Tables I and IT list the starting profiles of enthalpy and shear
stress. The tables list profiles at x/L = 1 at the end of upstream
regions having a given wall temperature, with and without transpiration,
respectively. The corresponding curves are shown in figures 2 and 3.
The dimensionless terminology is used in the computer program, and is
explained in the section "Symbols."

Other numerical data used in the computations were

¥y = 1.4

R = 1716.5 sq ft/sec2 °R

cpy = 6007.8 sq ft/sec2 °R
= 216° R

Pr = 0.72

The Reynolds number per foot based on tropopause outer edge conditions
(pp = 472.68 1b/sq Tt, Te = 389.99° R) was 6.93x10°.



The Examples and Results

Case 1l.- The case of supersonic flow over a solid cold wall

e,

(Tw/Tadl = 0.5) at uniform wall temperature downstream from the porous

region is shown in figure 4. It is seen in figure 4(a) that the skin-
friction parameter starts at less than 20 percent of that for the no
blowing case, rising to a value of less than 70 percent of that for the
no blowing case in a solid length equal to the porous length. The ratio
of local heat transfer with upstream transpiration cooling to local heat
transfer without upstream transpiration cooling for the same wall tempera-
ture ratio (Tw/Tadl = 0.5) and Mach number (but necessarily different wall
temperature) is shown in figure 4(b). It is seen that in a region down-
stream from a porous region in a length equal to the porous length, use

of upstream transpiration cooling requires a local removal of heat only
22 to 76 percent of that required to maintain the specified wall tempera-
ture ratio without upstream transpiration. Figure 5 shows the heat-
transfer comparison for the case in which the local heat-transfer ratio

is based on the condition that the upstream region wall temperature be
the same for the porous and nonporous upstream regions. The ratio of the
local heat transfer, computed for this example, to that of the solid flat
plate at the same Mach number, flight conditions, and wall temperature
(but necessarily different Tgg 6 and Tw/Tadl) varies from approximately

0.20 at x/L = 1 to 0.70 at x/L = 2. This is a significant reduction in
local heat transfer required to maintain a given wall temperature.

Cases 2 and 3.- Figure 6 presents the results of supersonic flow
over an adiabatic solid wall downstream from a fixed temperature region
cooled with and without transpiration.

The skin-friction results are shown in figure 6(a). A very substan-
tial reduction in skin friction is effected by the upstream transpiration,
as would be expected.

The ratio of wall temperature to free-stream stagnation temperature
in the adiabatic region is presented in figure 6(a). Because of the
assumption of constant Cp> this temperature ratio is the same as the
enthalpy ratio.

The two curves labeled "transpiration upstream" are results of only
one example in which two different methods of computation of the wall
enthalpy were used. The solid curve was computed by the series expansion,
equation (A18), and the broken curve was computed by Simpson's rule,
equation (Al6). The use of Simpson's rule instead of the series expansion
in the computation of Tw/Tt results in a small saving of computer time.
However, in reference 9 it was found that the Simpson's rule solution
gives poor convergence in regions not far downstream from x/L =1 for
some examples. The maximum difference between the two Tw/Tt solutions
is approximately 1 percent, from which it can be concluded that the
Simpson's rule expression yields satisfactory results for this example.



However, the convergence difficulties reported in reference 9 require
that caution be exercised in the application of Simpson's rule in
general. To be safe, the series expansion for Tw/Tt should be used
instead of Simpson's rule.

The first point (x/L = 1) computed by the program is designated
"end of porous wall" on the ordinate. In each case, it coincides with
the exact solution corresponding to the starting profiles used. At that
first point, v, the component of velocity perpendicular to the wall, is
different from zero. At the next step (x/L = 1.0004), however, v, is
specified to be zero. This is a realistic physical situation. An actual
discontinuity in transverse velocity at the wall will exist where the
porous region Jjoins the solid wall. A discontinuity in skin-friction and
heat-transfer parameters corresponding to the specified discontinuity in
the transverse velocity at the wall is evident (vetween the dotted line
marked "end of upstream region" and the beginning of each curve) in
figures 4, 5, and 6. The series expansions used in the computation of
these parameters (eqs. (A13) and (Al5)) show vy to be responsible for
the discontinuity. A similar discontinuity in Tw/Tt caused by specified
discontinuities in both vy and q,, is seen in figure 6. The terms
involving a,, and v,, responsible for the computed discontinuity appear
in the series expansion (eq. (A18)). This unrealistic situation of
discontinuous wall temperature results partly from the unrealistic speci-
fication of discontinuous heat transfer. There is of course no perfect
insulator; that is, q cannot be achieved discontinuously in actual flows.
Conducition would smooth out the wall temperature discontinuity.

COMPARISON WITH EXISTING SOLUTIONS

The results obtained above are compared with those computed by the
methods of references 1 and 2 and are shown in figures 7 and 8. The
comparison is made on the basis of identical physical situations; that
is, the results of each method are presented for the same flight condi-
tions, blowing rates, and porous-wall temperature level. Before discussing
these curves in detail, it is of interest to discuss the methods by which
these various results were obtained.

There is little agreement in the results of the three methods. This
is no doubt due to different methods of solution and to different assump-
tions made in joining the flows of the porocus and nonporous regions.

Some of the differences in the three methods of solution appear in the
table below.
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Rubesin and|Libby and

Features of sclution Inouye Pallone 'Finite
(ref. 1) |(rer. 2) |difference

Step-by-step integration of exact

boundary-layer equations X
Polynomial solution using von Kirmédn

integral method X X

Prandtl number 1.0 1.0 0.72
Viscosity temperature law Linear Linear Sutherland

Discontinuity in wall shear stress
allowed No Yes Yes

References 1 and 2 are polynomial-type solutions employing the
von Kérmdn integral methods. These are by nature approximate methods in
that they deal with bulk or gross properties of the boundary layer. The
finite difference solution, on the other hand, deals directly with the
differential equations in finite difference form and solves them in a
point-to-point pattern progressing downstream from a given solution at
the end of the porous region.

The assumptions made in joining the porous and nonporous flow fields
differ between references 1 and 2. The present report did not have to
make such assumptions. In reference 2 velocity and enthalpy profiles
downstream from the porous region were determined by specifying continuous
flux of mass, momentum, and energy at the interface between the porous
and nonporous regions. This leads to a discontinuity in local velocity
and stagnation enthalpy profiles (as well as shear stress) at that inter-
face. On the other hand, in reference 1 a continuous wall shear stress
was assumed at the interface. This seems to be an essential difference
between the solutions of references 1 and 2. The finite difference solu-
tion yields discontinuities in skin friction, heat transfer, and wall
temperature at the interface, as was discussed previously.

It is to be expected that these major differences in methods of
solution and assumptions will lead to different results. However, no
attempt has been made to establish quantitatively the influence of any
detail of the different methods on the lack of agreement among the three
solutions.

Figure 7 shows the skin-friction result of the finite difference
solutions compared with those of references 1 and 2. The finite difference
solutions of figures 4 and 6 having upstream transpiration are adjusted
to correspond to the ordinate shown in figure 7 by means of the appropriate
values of Rex/Cl. It is seen that there is little difference between
the finite difference solutions for the insulated and the cold walls.

As was indicated above, the skin-friction results of all three methods
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of solution differ appreciably. It is seen that the initial discontinuity
in the reference 2 analysis is considerably larger than that of the
finite difference solutions. It should be mentioned that the curve 4

was obtained by computing cp /ReX/Cl by the method of reference 2, and

dividing the result by the standard value 0.664 (ref. 5) adjusted
slightly for the appropriate values of C,.

The waYl temperature computation results of several solutions for
supersonic flow (Me = 3.0) over an adiabatic solid wall downstream from
a. cold porous region having wall temperature level Ty /Tad = 0.5 and
fy. = -1 are shown in figure 8. Curve a is obtained from the Rubesin and

Inouye analysis. Curve c¢ 1is the finite difference solution using the
series expansion (eq. (A18)). Curve d 1is obtained by the Libby and
Pallone solution (ref. 2). It is seen that the latter solution predicts
considerably more thermal protection than does either a or c.

The thermal analysis of reference 1 depends on the skin-friction
results, which differed from those of the finite difference solution.
Hence, it is not surprising that the wall temperature results of the two
methods differ (curves a and c, fig. 8). However, curve b in figure 8
is the result of the thermal analysis of Rubesin and Incuye when the
skin-friction results of the finite difference solution were used in that
analysis. The curve shows improved agreement between the wall temperature
results of the two methods of solution. The mathematical details involved
in the use of finite difference results in the Rubedéin and Inouye analysis
are presented in appendix B.

A comparison of the heat-transfer results of the finite difference
solution to those of reference 1 is shown in figure 9. The analysis of
reference 2 applies only to the adiabatic wall condition, and cannot be
included in this comparison. Figure 9 is a plot of the ratio of local
heat transfer with to that without upstream transpiration ccoling at
fixed flight conditions and wall temperature. Because the wall tempera-
ture is constant in this example and Pr = 1 in reference 1, Reynolds
analogy as presented in reference 12 was used to obtain the Rubesin and
Inouye heat-transfer curve: The Rubesin and Inouye results are cbserved
to lie above those of the finite difference solution for the most part.
This is not surprising because the same behavior was observed in the
ratio of skin-friction coefficients (fig. 7) on which the heat-transfer
results of reference 1 depend.

The differing results presented for three methods of solution raise
an obvious question: Which of these soclutions is the best representation
of the physical situation? This can be answered by briefly looking again
at the methods by which the results were obtained. Briefly recapitulating,
the finite difference solution is a direct numerical solution of the
finite difference form of the exact boundary-layer equaticns. Because
the step width is chosen such that errors die out, the solution of the
finite difference equations i1s considered to be correct. The convergence
of the finite difference solution to that of the differential equatfbns
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appears to be satisfactory in examples where it can be checked. The
physical flow is computed taking specified boundary conditions (continuous
or discontinuous) into account as they occur. The resulting solution is
considered to be as realistic a representation as the flow situation that
wa,s specified.

In contrast with the above, the polynomial-type solutions of
references 1 and 2 are by nature approximate soclutions dealing with bulk
properties across the boundary layer. Patching of solutions for the
porous and nonporous region necessitates making additional assumptions.
Which assumptions are appropriate is not clear.

For these reasons, the finite difference solutions are considered
to be more accurate than those of references 1 and 2.

CONCLUDING REMARKS

For these examples of upstream transpiration coocling, the finite
difference solutions not only produce results different from those of
references 1 and 2, but different conclusions as well. Where the Libby
and Pallone analysis would be very optimistic about the effects of
upstream transpiration cooling, and the Rubesin and Inouye analysis would
be quite conservative, the finite difference solution takes a stand
between these saying that the effect is quite good in a limited region
as follows,

Upstream transpiration cooling affords significant thermal protection
to a solid region equal in length to the porous region for the flow con-
ditions used in the computations (Me = 3.0, Twl/Tadl = 0.5, fwl = -1,

tropopause flight temperature). In particular, for the example of uniform
wall temperature, the upstream transpiration cooling requires removal of
heat in the solid region only 20 to 70 percent of that required to maintain
that wall temperature without upstream transpiration cocling.

For the case of an adiabatic wall downstream from the transpiration-
cooled region, the finite difference solution for the temperature ratio
(TW/Tt) lies below that of reference 1, but considerably above that of
reference 2. Improved agreement between the Tw/Tt solution of refer-

ence 1 and the finite difference solution is achieved when the skin-
friction results of the latter are used in the thermal analysis of the
former. It is shown by finite difference solutions that, for a fixed
upstream region temperature, upstream transpiration cooling affords much
better thermal protection to the adiabatic solid region downstream than
does upstream cooling without transpiration.
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The finite difference solutions for skin friction lie significantly
below that of reference 1 and are considerably different from that of
reference 2. Similarly, the finite difference solution for heat transfer
lies below that of reference 1 for the most part.

Because of the methods by which the results were obtained, the
finite difference sclutions are considered to be more accurate than those
of references 1 and 2.

As interest in more complex boundary-layer flows grows, finite
difference solutions will probably assume the major burden of boundary-
layer computations; for example, axisymmetric boundary-layer flows with
variable Euler number can be computed by the finite difference scheme.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Nov. 26, 1958
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APPENDIX A

MATHEMATICAL DESCRIPTION OF THE SOLUTION

Basic equations.- A basic description of the solution is included
here. A detailed description is found in references 6, 7, 8, and 9.

The steady-state, two-dimensicnal, boundary-layer flow of a
compressible fluid with variable properties can be described by the
Crocco form of the boundary-layer equations. These are

27y tpe "yt lulor) -u p, Tt = upnTy (A1)

1-Pr
Pr

iygt+Pr

1Ty + 124up, (1y+u) = uppiy (a2)

In the examples computed in this report, pe' was zero. However, the
computer program is not limited to examples having no pressure gradient.

The equation of state of a perfect gas and the Sutherland viscosity
law are used and are, respectively,

-1
p=pe=pRT=7—7—ol (23)

1t+e S N
<1t> i+e S (84)

The latter assumes constant specific heat. A power law approximation?
for the viscosity, which when differentiated is used for the computation
of the term u(pu)x in the solution of equation (Al), is

0.76
B (4
by o <it (85)

One of the equations used to obtain coefficients in series expansions at
the wall is the momentum equation before v 1is eliminated by use of the
continuity equation, that is

t
"Pe + Ty 7 (A6)

PUUy % + pv = -

1The accuracy of the approximation has been investigated in
reference 8 and appears satisfactory.
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Boundary conditions.- The boundary conditions at the outer edge of
the boundary layer are

Te = 0 (A7)
2
fe = iy - = (28)

T = Ty, (A9)
and if the wall temperature is specified,
iy = iy(x) (A10)

or conversely if the heat-transfer rate is specified,

__ luwTw
q, = or (A11)

Series expansions near the wall.- The square of the shear stress is
expanded in the series

T2 = do+dyu+d,u+d u (A12)

which is written for the first two points out from the wall described by
u = nAu, where n =1 and 2. The coefficient dz 1is eliminated from the
resulting equations, and the remaining coefficients are determined from
boundary and compatibility conditicns, as described in reference 6. The
resulting equation for the shear stress at the wall point X/L = l+mAx/L
is (for p.' = 0)

i

Ty = - %-Aupwvw + M/ﬁ% (Aupwvw)2 + % Ti’l - Ti,z (A13)

If iy (eq. (AlO)) is specified, a series expansion useful in
determining the heat transfer at the wall is

1yT = bo+butb uZ+b u+b ut (A1)
This equation is written through the three points n =1, 2, 3 out

from the wall at which u = Au, 2Au, and 3Au, respectively, all at an

x location x/L = l+mAx/L. Both b, and b, are eliminated from the
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resulting three equations. The remaining coefficients are determined as
before. The resulting equation for iy, 1in the absence of pressure
gradient is

[108(iU_T)m}l—Q'Y(iuT)m,2+lP(iuT)m,31|

luw = Tw +
85Tw2+6ﬁuPrpwyw[llTW+3Au(Pr-l)pwvw]

6ﬁuPqu[llTw+3ﬁu(Pr+l)pwvw] - lSAuzPruWixw

(A15)
857w2+6AuPrpwvw[llTw+3Au(Pr-l)pwvw]

If heat transfer is specified by equation (All), the wall temperature
(or enthalpy) is computed by either of two methods. The first is
Simpson's rule which becomes (ref. 8):

S . . .
iy =3 (1m,1‘1m,3)+1m,2‘1uwau (A16)
The second is a seriles expansion for i as follows.
L2 _ 2 3 4
1% = cgte utc uT+e utte u (A17)

This equation is treated in the same way as equation (Alk), the
coefficients being determined by boundary and compatibility conditions.

The result is

Pr
iy = élg 1081y ,1-2Tiy o +ip 5+66 quAu +
p 1
18PrAu? {1 + [_‘;.’_‘5_“ (Pr-1) - H"pe}}) (A18)
W w Ty 2

In reference 9, the Simpson's rule method was found to result in poor
convergence, which made it necessary to use the series expansion to
obtain 1.

Equations (Al).and (A2) are solved at every boundary-layer mesh
point as described in reference 8. Equations (A13) and (A15), (A1l6), or
(A18) are solved at every wall point. In this manner, the solution
progresses downstream.
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APPENDIX B

THE FINITE DIFFERENCE SOLUTION AND THE RUBESIN AND

INOUYE THERMAL ANALYSIS

In the section comparing finite difference results with those of
existing solutions, the use of finite difference skin-friction results
in the thermal analysis of reference 1 was discussed. The mathematical
details are as rollows. A quantity used in reference 1 is

_f fouy L (Tw
+0) = pw' By'jL'  Te <FW (B2)

The middle term is in the terminology of reference 1, and s(x) is the
quantity defined in that reference. Also o(£) from equation (A83) of
reference 1 becomes

o~ T
o(€) = 3= s(x) =a§;%ﬂ (B2)
Oy

The subscripts e and o are interchangeable. Assuming that
= =Cy o (B3)

(where C, 1is the Chapman-Rubesin constant (ref. 4) written for the
porous section), leads to

Q

o)
o(t) = E& EL Ty (BY)

Requiring that o(1) = 0.325 (ref. 1) and using values from the finite
difference solution, one may determine o(&) from equation (B4). This
makes possible the integration of equations (A83) and (A92) of reference 1,
yielding the wall enthalpy distribution shown in curve b of figure 8.
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APPENDIX C
COMPUTER PROGRAM MODIFICATIONS

The computer program described in block form in figure 11,
reference 8, and modified by figures A-1 and A-2 of reference 6 was
modified again in several ways to facilitate computations of the present
examples.

Because v;; was zero for x/L > 1, but different from zero for
x/L = 1 in the present examples, the obvious change was to set v, =0
after the computation of the points at m = O was complete. This was
done in the part of the computation shown in sketch (a).

Set vy, =0 for m>0

A

t Punch 1
Lol
Sketch (a)

Because the examples were longer than those previocusly computed by
this program, the output was modified to read out results of profiles and
wall points of stations in which m was a given multiple of 8. This was
accomplished by means of specified parameters P, AP, and Q@ in the sub-
routine of sketch (b). Sample values of these quantities used for
punching every thirty-second downstream station are AP = 32, and
Q = 30.8, where the initial value of P is 31.9.
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i Increase n
I (see fig. 11, ref. 8)

Fm e R S

i
| Punch st Pr?/ 3 fRe /C, etc. (see fig. 11, ref. 8) |

Yes [ Is P-m < 0O? >1 No

Restore punch commands Is P-m-Q > 0%

4 \

Yes No
Increase (First time around (Second time around
P by AP after punch operation) after punch operation)

The
entrance
tions of
commands

1.

2.

\

Remcve and store
\ punch commands Y

P ——
—— Exterior flow (see fig. 11, ref. 8) +H———
g U e -
Sketch (Db)

insulated wall examples required program modifications before
to the exterior flow routine (i.e., at the end of the modifica-
sketeh (b)). These can be described best by one block of
which, after m has been increased to 1, proceeds to

Compute 1,-ie in the exterior routine.
Set vy, 1yws, 4, and T,y €qual zero, in the wall point routine.

Compute iy by either the series expansion or Simpson's rule
in the wall point routine.
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4. Compute the recovery factor in the wall point routine.
5. Skip this entire block after the program has been modified once.
These modifications to the computation scheme discussed in

references 6 and 8 describe the program used to compute the examples of
this report.



[@)
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TABLE I.- STARTING PRCFILES FOR

Mg = 3.0, Twl/Tadl = 0.5,

£y, = -1.0, Te = 339.99° R, AND Ty = 452.34° R

u/ue it a

0 1.0356050{0.0158900
.05|1.1006L70] .0269720C
.10[1.1531480( 0376120
.15(1.1968560] .ok75810
.20]1.2310290| .0567680
.25)1.2587460) 0650710
.30]1.2798800) .0722150
.35(1 .29k 7780  .OT8T7510
JLol1.3037270] .0839720
A511.3065330] 0874830
.5011.30351.80| .0906380
.55{1.2950950| .0920020
.6011.2810580] .0919220
.65]1.2608000) .09013k40
.70|1.2343670) .086WTTO
L75]1.2021270) .0808910
.80{1.1633110§ .0T729990
.8511.1169350] .0623030
.90|1.0617830| .0LBLTTO
.95 .99L86T0| .0292160

1.00| .8928550] .0000C00
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TABLE II.- STARTING PROFILES FOR Mg = 3.0, Twl/Tadl = 0.459,
fy, = 0, Te = 389.99° R, AND Ty, = 452,340 R

u/ue i+ T+

0 1.0356050|0.14875k40
.05]|1.086011k4| .1L487687
.10]1.1313143] .1Lk86k69
.1511.1714895] 1483728
.20]1.2064998] .1478896
.2511.2340550| .1L69696
.30[1.2563106] 1456360
.3511.2733546] .1438292
Loll.2850720] L1k14685
L5101 .2921466) 1383408
.50]1.2896725] .1343205
.5511.2834143) .1294052
LB0(1.2718 07 L1234532
.65(1.2534401 | .1162937
.70]1.2292588| .1077263
L7511.1985191| .0975240
.80]1.1600998] .0854255
.8511.1161789] .07100k2
.90]1.0619288] .0534711
.95] .9952259] .0315010

1.00| .8928550! .0000000
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Finite difference solution

"Exact” solution (ref. 5)

2
st pr2/3 V/Re /€,

I

] ] |

o)
1.0

1000 1500 2000 2500
Number of steps along wall
| 1
i.5 2.0
x/L

Figure l.- Flat plate solution without upstream transpiration cooling;

Me=3.0, Tw/Tad=O.5, =0, tropopause flight temperature.
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u/de

Figure 2.~ Flat plate enthalpy and shear stress starting profiles for
transpiration cooling; M =3.0, Ty./Tagq.=0.5, fi;.=-1, Te=389.99° R,
o 1 1 1
Twl=u5203)+ Ro
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L

0 .2 4 .6 .8 .0
u/ue
Figure 3.~ Flat plate enthalpy and shear stress starting profiles for

cooling without transpiration; Me=3.0, Ty, /Taq,=0.459, Fy, =0,
Te=389.99° R, TW1=A52.3MO R.



28

-.6
“_i
. 8
S
L5
x
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&
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) End of
NS upstream
o region A o
1.0 1.5 2.0
> x/L
(a) Skin-friction results.
5=}
S
b=
o
]
c
o
(8]
- |l o
A
»-;_ n—-;—
= |
|
End of ° |
upstream
region |
0 . -
1.0 1.5 2.0
x/L

(b) Heat-transfer results.

Figure U4.- Supersonic flow over cold wall at uniform temperature
downstream from transpiration cooled region; Mg=3.0, Tw/Tadl=O°5:
tropopause flight temperature.
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8 r
g 6|
<
=]
@
[ =
o
(&)
1
T o 4 |
S| F
T |©
2
End of __|
upstream
region
0 l _
1.0 1.5 2.0

x/L

Figure 5.- Ratio of local heat transfer with to that without upstream
transpiration cooling at fixed flight temperature and wall
temperature; Me=3.0, Tw/Tadl=O-5 for plate with porous upstream

region, TW/Tadl=O.M59 for plate with solid upstream region,
TW=M52°3hO R for both plates, tropopause flight temperature.
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Jr No transpiration upstreom—\

Transpiration upstream

Re,/ C

Ct

m
2
Q
o]
Py
{

P pp———

0 1 )
1.0 1.5 2.0

x/L

(2) Skin-friction results.

No tronspirgtion upstrﬁﬂ

7k //

/ Tronspiration upstream

iw computed by

5
0.5 —| | Series expansion
—_— 0.5 -1 | Simpson’s rule
—_—— 0.459 O | Series expansion
End of upstrea
region” — —
4 L .
1.0 .5 2.0
x/L

(b) Wall temperature results.

Figure 6.- Supersonic flow over adiabatic wall downstream from region at
fixed temperature cooled with and without transpiration; Mg=3.0,
Twl=h52.3ho R, tropopause flight temperature.
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a
Rubesin and
inouye Finite difference b
solution for wuniform c
(ref, 1)

wall temperature

Finite difference
solution for
? adiabatic wall d
: 5
=
Cx Libby and Pallone
:.._ (odiabatic wall)
A (ref.2)
)
2
End of _ _ | |
upsfream '
region 1.5 20
x/L

Figure T.- Comparison of skin-frietion results; Mg=3.0, Twl/Tadl=O.5,

fwl='1 , tropopause flight temperature.
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Rubesin and

Inouye
7~ Finite difference {ref, 1) a
solution combined b
with Rubesin c
G- and Inouye
Finite difference
DS
i A “— Libby and Pallone
E (ref, 2)
S
2
N ] ]
10 .5 20

x/L

Figure 8.- Comparison of thermal results for adiabatic wall; Me=3.0,
Twl/Tadl=O'5 s fw1="l » tropopause flight temperature.
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-8 - Rubesin and
(ref, 1)

inouye

q)fwl =‘|

Dty = 0
constant T

o

r

4 - Finite difference solution

E

0 | ]
1.0 1.5 2.0

x/L

Figure 9.~ Comparison of heat-transfer ratio results (ratio of local
heat transfer with to that without upstream transpiration cooling at
fixed flight temperature and wall temperature); Me=3.0, Ty=452.3L° R,
tropopause flight temperature.

NASA - Langley Field, va. A=150
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